
COHEN-MACAULAY RINGS SELECTED EXERCISES

KELLER VANDEBOGERT

1. Problem 1.1.9

Proceed by induction, and suppose x ∈ R is a U and N -regular

element for the base case. Suppose now that xm = 0 for some m ∈M .

We want to show that m = 0. Then, let ϕ : U → M and ψ : M → N

be the sequence maps. Note that by properties of exact sequences that

ψ is surjective and ϕ is injective.

Since xm = 0, ψ(xm) = xψ(m) = 0 =⇒ ψ(m) = 0, since x is

regular in N . Thus, m ∈ Kerψ = ϕ(U) so that m = ϕ(u) for some

u ∈ U .

Then, certainly xm = ϕ(xu) = 0, and by injectivity, we know that

xu = 0. Since x is regular, we conclude that u = 0 so that m = ϕ(0) =

0, and x is regular in M .

Suppose now that x = x1, . . . , xn is weak U and N regular for all

i < n. Then, merely apply the argument of the base case to the exact

sequence induced:

0→ U/(x1, . . . , xn−1)U →M/(x1, . . . , xn−1)M → N/(x1, . . . , xn−1)N → 0

To show that x must be a weak M regular sequence as well.

Now, suppose that x is weak U -regular and N -regular. Using Propo-

sition 1.1.4, we have an induced exact sequence
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0→ U/xU →M/xM → N/xN → 0

Suppose for contradiction that M/xM = 0. Then, by properties of

exactness, the induced map ψ̄ is surjective and we conclude N/xN = 0,

contradicting the fact that x is N -regular. Thus, x is also M -regular.

2. Problem 1.1.10

(a). Suppose that x and x′ are both M -regular elements. Suppose

(xx′)m = 0 for some m ∈ M . Then, since x is regular, x′m = 0, and

since x′ is regular, we conclude m = 0. Thus, xx′ is M -regular, and

the general case for weak M -regular sequences follows by induction.

Now, assume that M/xM 6= 0 and M/x′M 6= 0, and suppose for

contradiction that M/xx′M = 0. Then, since M = xx′M and x′M ⊂

M , we multiply by x to see that M ⊂ xM so that M/xM = 0 (and by

commutativity we also see M/x′M = 0), a clear contradiction. Thus,

M/xx′M 6= 0 so that the general case follows by induction.

(b). This result follows from part (a) almost immediately, where we

note that we can apply this to any M -regular sequence and itself,

merely identifying the ith element each time. More precisely, sup-

pose x = x1, . . . , xn is regular. Then, by induction and the result of

(a), xe11 , x2, . . . , xn is regular as well, with e1 some integer > 1. Now

successively apply this for every other index 1 < i 6 n to see that

xe11 , x
e2
2 , . . . , x

en−1

n−1 , x
en
n is also M -regular.

3. Problem 1.1.11

We want to prove the following: Suppose x is a weak-M ⊗R N se-

quence, and N is faithfully flat over R. Then x is a weak M -sequence.
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Let x be a regular M ⊗N element (as usual, the general case follows

from induction). We have the homothety ψ : M ⊗ N → M ⊗ N ,

m⊗ n 7→ x(m⊗ n), which is injective since x is regular. By definition,

x(m⊗ n) = (xm)⊗ n so that ψ(m⊗ n) = (xm)⊗ n.

By faithful flatness of N , the map x⊗ idN is injective iff x is injective

(x : M → M , m 7→ xm). But this is equivalent to saying that the

element x is M -regular, so we are done.

4. Exercise 1.4.18

Since M has a rank, say r, we have that M ⊗ Q = Qr, Q denotes

our field of fractions of R. We can choose a basis {e1, . . . , er} for the

above vector space. Since M is finitely generated, we can also choose

a generating set {x1, . . . , xn}. Consider the inclusion M ↪→ Qr. We

can find aij, bij ∈ R such that xi =
∑

j
aij
bij
ej. Take b :=

∏
i,j bij. We

can then consider the inclusion

M ↪→ Re1
b
⊕ Re2

b
⊕ · · · ⊕ Rer

b
∼= Rr

The above is obviously a free module, and the inclusion is injective

since M is torsion free. Therefore, M is isomorphic to its image, which

is a submodule of the free module Rr. Note also that Rr clearly has

the same rank, as Rr ⊗Q = Qr, so the problem is solved.

5. Problem 1.4.19

Since R is Noetherian and M , N are finitely generated, M is finitely

presented. Choose a presentation

Rm −→ Rn −→M −→ 0
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Apply HomR(−, N) to the above, and recall that HomR(R,N) ∼= N .

We will have an induced short exact sequence (with N ′ being the image

of the map from Nn → Nm):

0 −→ Hom(M,N) −→ Nn −→ N ′ −→ 0

Employing the result of Proposition 1.2.9 of the book, we see

grade(I,Hom(M,N)) > min{grade(I,N), grade(I,N ′) + 1}

Now we have 3 cases: in the trivial case grade(I,N) = 0, obviously

grade(I,Hom(M,N)) > 0 always. Suppose grade(I,N) = 1. Then

grade(I,N ′) = 1 as well, and the result again follows immediately.

Finally, when grade(I,N) > 2, we have that grade(I,N ′) > 1, so that

grade(I,Hom(M,N)) > min{grade(I,N), 2}

Completing the proof.

6. Problem 1.4.20

(a). First, we have the following: Claim: If M is finitely generated and

R is Noetherian, then M∗ is torsion free and finitely generated.

To prove this claim, note that since M is finitely generated, we have

an exact sequence

Rn −→M −→ 0

Applying HomR(−, R) to the above yields

0 −→M∗ −→ Rn

Hence, M is isomorphic to its image in a torsion free submodule. Since

R is Noetherian, every submodule of Rn is finitely generated, giving

that M∗ is torsion free and finitely generated.
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Now we can proceed to the problem. Assume M is torsionless and

suppose that rm = 0 for 0 6= r ∈ R and m ∈ M . We want to

prove that m = 0. Consider the map m 7→ (φ(m))φ∈M∗ . By definition

of torsionless, the image of m is 0 iff m = 0 identically. Consider

rm 7→ (φ(rm))φ∈M∗ = r(φ(m))φ∈M∗ . Since rm = 0, this point maps

to 0. However, the above shows that r(φ(m))φ∈M∗ = 0. Since M∗

is torsion free, we conclude that m = 0, so that M is torsion free as

asserted.

(b). First note that if M is a submodule of a finite free module Rn, then

it is obviously torsionless since (Rn)∗∗ ∼= Rn, so that any free module

is torsionless (and hence any submodule of a free module. Note that

this improves the claim of part (a), as we now see that M∗ is also

torsionless.

Now, suppose that M is torsionless. By the claim proven in part (a),

M∗ is finitely generated and we can choose a generating set {φ1, . . . , φn}.

Then, we can consider the following map Θ : M → Rn, which takes

Θ(m) = (φi(m))ni=1. It suffices to show that this map is injective, so

that M is isomorphic to its image as a submodule of a free module.

Suppose then that Θ(m) = 0. Then, φi(m) = 0 for each generator.

But then we see that φ(m) = 0 for all φ ∈M∗. Since M is torsionless,

m = 0, so that Θ is injective, as desired.

(c). Note that since M∗ is finitely generated, the claim of part (a)

along with the remark in (b) gives that M∗∗ is finitely generated and

torsionless. Since M is reflexive, M = M∗∗, so M is torsionless and

hence isomorphic to a submodule of a free module (by (b)). Taking F0
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as the cokernel of the map M ↪→ Rn := F1, we have the exact sequence

0 −→M −→ F1 −→ F0 −→ 0

So that M is a second syzygy.

7. Problem 1.4.21

We have an exact sequence

F −→ G −→M −→ 0

Dualizing yields

0 −→M∗ −→ G∗ −→ F ∗ −→ D(M) −→ 0

We have that M∗ is finitely presented, so choose a presentation F1 −→

F0 −→M∗ −→ 0, leading to a partial free resolution of D(M):

F1 −→ F0 −→ G∗ −→ F ∗ −→ D(M) −→ 0

Dualizing our presentation of M∗, we get the exact sequence

0 −→M∗∗ −→ F ∗0 −→ F ∗1

Leading to the sequence

G // M
h // M∗∗ // F ∗0

Which can be extended to the sequence

F −→ G −→ F ∗0 −→ F ∗1

Now, let us consider computing the cohomology in the above sequence.

The cohomology at G is going to be the kernel of the map taking g 7→

g+Imφ 7→ h(g+Imφ) ↪→ F ∗0 modulothe image of φ, which is M . That

is, g + Imφ ∈ Kerh, so that Ker(G → F ∗0 ) = {g : g + Imφ ∈ Kerh}.

Hence, taking the quotient Ker(G→ F ∗0 )/ Imφ gives precisely Kerh.
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Now consider the cohomology at F ∗0 . Im(G → F ∗0 ) is isomorphic to

Imh viewed as a submodule of F ∗0 (under the inclusion M∗∗ ↪→ F ∗0 ).

Also, by the exact sequence 0 −→ M∗∗ −→ F ∗0 −→ F ∗1 , we have that

Ker(F ∗0 → F ∗1 ) = M∗∗.

Now, to solve the problem, dualize our partial resolution for D(M).

We then see that the above cohomology groups are precisely isomorphic

to Ext1R(D(M), R) and Ext2R(D(M), R), respectively.

8. Exercise 1.4.22

9. Exercise 1.4.23

10. Exercise 1.4.24

11. Problem 3.1.21

Since R is given as a PID, it suffices to show the quotient K/R of

the field of fractions by R is divisible. Note:

K/R = {r/s ∈ K/R | s 6= 1}

Hence, given r/s ∈ K/R, we can write this as r(1/s), r ∈ R, hence

every element is divisible so that K/R is injective (and hence 0 −→

K −→ K/R −→ 0 is an injective resolution).

12. Problem 3.1.22

We proceed by proving that HomR(R, k) is the injective hull of the

residue field, which is indecomposable by Theorem 3.2.6.

Take S := Soc(HomR(R, k)). First note that injectivity is clear,

since
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HomR(−,Homk(R, k)) ∼= HomR(−⊗k R, k)

∼= HomR(−, k)

Since k is a field, it is obvious that HomR(−, k) is exact, so that

HomR(R, k) is an injective module over R. Continuing, since R has

finite k-dimension, Homk(R, k) is an Artinian module, so that S is the

intersection of all essential extensions of HomR(R, k), however is also

characterized as

S = HomR(R/m,Homk(R, k) ∼= HomR(k ⊗k R, k)

∼= Homk(k, k) ∼= k

From the set of all simple submodules of Homk(R, k), we can choose

a minimal element M . By definition of essential extension, M ∩ S 6= 0

and hence we see that Homk(R, k) is an injective essential extension of

S, so that Homk(R, k) = ER(S) = ER(k), which is nondecomposable,

so we are done.

13. Problem 3.1.23

Suppose there exists a nonzero finitely generated injective module

E. We have that dimR(E) 6 idR(E) = 0, so that E is an Artinian

module (since E is also finitely generated) with Supp(E) = {m}. By

3.2.8, E ∼= ⊕E(R/m), implying that E(R/m) must also be finitely

generated.

If T (E) denotes our Matlis dual (so that T (−) = Hom(−, E(k))),

we see that T (E(k)) must be Artinian as an R-module. However,

T (R) ∼= E(k), and hence:



COHEN-MACAULAY RINGS SELECTED EXERCISES 9

T (E(k)) = T (T (R)) ∼= R So that R is Artinian as an R-module, and

hence as a ring.

14. Problem 3.1.24

We proceed by induction on depthRM . Assume M 6= 0 (else the

statement holds trivially) and suppose first that depthRM = 0. Then,

m ∈ Ass(M) so that we have an exact sequence

0 // R/m
x // M // L // 0

Set r := idRN , and apply HomR(−, N) to the above. We have an

induced exact sequence:

· · · // ExtrR(M,N) // ExtrR(R/m, N) // Extr+1
R (L,N) // · · ·

Obviously ExtrR(R/m, N) 6= 0 and Extr+1
R (L,N) = 0 by definition of

injective dimension. Hence, ExtrR(M,N) 6= 0, and ExtiR(M,N) = 0 for

all i > r. More precisely, idRN = r = sup{i | ExtiR(M,N) 6= 0}. Since

depthRM = 0, this completes the base case.

Inductive Step: Suppose depthRM > 0, so we can choose some M -

regular element x ∈ R, giving an exact sequence

0 // M
x //// M // M/xM // 0

Apply HomR(−, N) to the above:

· · · // ExtiR(M/xM,N) // ExtiR(M,N)
x // ExtiR(M,N) //

Exti+1
R (M/xM,N) // · · ·
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By the inductive hypothesis, we have that idRN = depthR(M/xM) +

sup{i | ExtiR(M/xM,N) 6= 0}. Set t := sup{i | ExtiR(M/xM,N) 6= 0},

so that for i > t the above exact sequence implies

· · · // ExttR(M/xM,N) // ExttR(M,N)
x // ExttR(M,N) // 0

is exact, so that ExttR(M,N) = xExtiR(M,N). By Nakayama’s Lemma,

we have that ExttR(M,N) = 0, and likewise ExtiR(M,N) = 0 for all

i > t. We also have that Extt−1R (M,N) 6= 0, since the above shows we

have an exact sequence

· · · // Extt−1R (M,N) // ExttR(M/xM,N) // 0

so that the vanishing of Extt−1R (M,N) implies the vanishing of ExttR(M/xM,N),

in contradiction with the definition of t.

Thus, we deduce sup{i | ExtR(M,N) 6= 0} = t − 1. Using this and

the standard equality depthRM/xM = depthRM − 1, we see:

idRN = depthR(M/xM) + t

= depthRM − 1 + sup{i | ExtR(M,N) 6= 0}+ 1

= depthRM + sup{i | ExtR(M,N) 6= 0}

Using that idRN = depthR, the above implies

depthR− depthRM = sup{i | ExtR(M,N) 6= 0}

which completes the proof.

15. Problem 3.1.25

We have that R is Gorenstein, M is finitely generated.

Assume first that pdM = n < ∞. We can choose a minimal free

resolution
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0 // Fn // · · · // F0
// M // 0

Since R is Gorenstein and each Fi is free, idFi = idR < ∞. By the

above resolution it is also clear that idM 6 idFi + i < ∞, and hence

idM <∞, as desired.

Conversely, suppose that idM < ∞. We proceed by induction on

the depth of R. When depthR = 0, we have that R is injective (idR =

depthR). Since M is finitely generated with dimension 0, it is finitely

presented so that there exists an exact sequence

0 −→ Rn −→ Rm −→M −→ 0

for positive integer m, n. Since R is injective, so is Rn, and hence the

above sequence splits so that Rm = Rn ⊕M . Then M is the direct

summand of a free module, hence projective with pdM = 0 <∞.

Inductive Step: Suppose depthR = n, and choose some R-regular

element x. As M is finitely generated, we have an exact sequence

0 −→ K −→ F −→M −→ 0

where K denotes the kernel of the surjective map F → M , and F is

free.

It suffices to show that pdK < ∞, since any projective resolution

for K can be extended to a resolution for M . Since F is free, x is also

F regular and hence K-regular. We have the equality:

idR/xRK/xK = idRK − 1

Since R/xR is also Gorenstein, we can employ the inductive hypothesis

to deduce pdR/xRK/xK < ∞. However, pdR/xRK/xK = pdRK,
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hence K has finite projective dimension, so that pdM < ∞ as well,

completing the proof.

16. Problem 3.1.26

Suppose that id k <∞. Then, note:

id k = sup{i | ExtiR(k, k) 6= 0} = pd k

Hence pd k < ∞ as well. By the Auslander-Buchsbaum-Serre Theo-

rem, we conclude that R is regular.

17. Problem 3.2.14

(a). Let ER(k) := E (ER(k) denotes the injective hull of the residue

field k). Note that the natural homomorphism ϕ : E → E ⊗R R̂

explicitly takes x 7→ x⊗ 1̂, where 1̂ = {1 + mt}t.

We first show surjectivity. Let x ⊗ {at + mt}t ∈ E ⊗R R̂. For some

positive integer n, we have that mnx = 0. We then deduce that mnR̂

annihilates x⊗ 1̂, since

mnR̂(x⊗ 1̂) = (mnx)⊗ (R̂) = 0⊗ R̂ = 0

Consider then {an + mt}t, where an is of the residue class of mn in

{at + mt}t.

Claim: x⊗ {an + mt}t = x⊗ {at + mt}t

The above is equivalent to showing {an − at + mt}t(x ⊗ 1̂) = 0. We

have two cases: t > n and t 6 n. If t 6 n, then by definition of the

inverse limit we have that an − at +mt = 0.

Now, if t > n, then an − at ∈ mn. Since mn annihilates x, the above

claim follows.
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Finally, using the above, we have:

ϕ(anx) = (anx)⊗ {1 + mt}t

= x⊗ {an + mt}t

= x⊗ {at + mt}t (by claim)

So that ϕ is surjective. It remains to show injectivity. This is much

easier, however, as R̂ is faithfully flat over R. Since the identity is

clearly injective, we have that 1⊗ 1̂ is injective by flatness. Then ϕ is

an isomorphism, so that E ∼= E ⊗R R̂.

(b). Let F denote the injective hull of E over R̂. Then, we want to

show that in fact F = E, giving that F = ER̂(k) = E.

Note first that F is also the injective hull (over R̂) of the residue

field k. We then have that given x ∈ F there exists a positive integer n

such that mnR̂x = 0. Since k = R/m = R̂/mR̂, we have the following

commutative diagram (rows exact):

0 // k = k̂ //

��

E = E ⊗R R̂

∃φxx

ER̂(k̂)

Since F = ER̂(k) is an essential extension, φ is a monomorphism, giving

us an exact sequence:

0 −→ E −→ F −→ F/Kerφ −→ 0

By injectivity of E, we have that F = E ⊕ E/Kerφ. However, E

and E/Kerφ both have an R̂-module structure by part (a), hence we

conclude that E/Kerφ = 0 by indecomposability of F . Thus E =

ER̂(k), as desired.
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(c). Note first that since N is finitely generated, N = N ⊗R R̂. We

have the following:

HomR̂(N̂ , E) = HomR̂(N ⊗R R̂, E)

= HomR(N,HomR̂(R̂, E))

= HomR(N,E)

Where we’ve employed Hom-Tensor adjointness and that fact that

since E = ER̂(k) by part (b), Matlis Duality yields HomR̂(R̂, E) =

T (R̂) = E.

18. Problem 3.2.15

Assume that (R,m, k) is an Artinian local ring. We proceed with

the proof:

(a) =⇒ (b): Suppose R is Gorenstein. R is Artinian, hence idR =

dimR = 0, so that R is injective. Let M be a finitely generated R-

module. M must also be injective, and as R is Artinian, we have an

exact sequence

0 −→ Rm −→ Rn −→M −→ 0

Applying HomR(−, R) twice, we note that our sequence remains exact

by injectivity and also that Rn and Rm are reflexive since they are free.

Thus the resulting exact sequence becomes

0 −→ Rm −→ Rn −→ HomR(HomR(M,R), R) −→ 0

and we immediately see that M must be reflexive.

(b) =⇒ (c): Suppose that every finitely generated R module is re-

flexive. Note that Ann I = HomR(R/I,R), so that HomR(Ann I, R) =

R/I by reflexivity. Since AnnR/I = I, we then see that I = Ann(HomR(Ann I, R)).
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Hence, let x ∈ I. Then xHomR(Ann I, R) = 0. Thus, if we merely

choose the inclusion map i : Ann I → R, the above shows that xi ≡ 0

so that x ∈ Ann Ann I. Therefore we see I ⊂ Ann Ann I.

To show the reverse inclusion, let x ∈ Ann Ann I. By definition,

xAnn I = 0 giving:

xAnn I = 0 =⇒ xHom(Ann I, R) = 0

=⇒ x ∈ Ann(HomR(Ann I, R)

=⇒ x ∈ I

Thus we conclude Ann Ann I = I.

(c) =⇒ (d): Assume we are given nonzero ideal I, J ⊂ R. We see:

I ∩ J = Ann Ann I ∩ Ann Ann J

= Ann(Ann I + Ann J)

Hence I ∩ J = 0 if and only if Ann I + Ann J = R. Since I, J 6= 0,

however, Ann I and Ann J are contained in the maximal ideal m. This

immediately gives that Ann I + Ann J ⊂ m, and hence by the above

I ∩ J 6= 0.

(d) =⇒ (a): We only need show that R is Cohen-Macaulay and

of type r(R) = 1. Since R is Artinian, we trivially have that dimR =

depthR = 0, so it remains to prove that r(R) = 1.

Recall that type is defined as the vector space dimension of ExtdepthRR (k,R).

As depthR = 0, we want to find dimk HomR(k,R). We recognize

HomR(k,R) as the socle (0 : m)R. Using the fact that R is Artinian

gives that mn = 0 for some integer n, and hence (0 : m)R is nontrivial

=⇒ dimk HomR(k,R) > 1. It remains to prove the reverse inequality.
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Choose nonzero x, y ∈ (0 : m)R. We have that Rx 6= 0 6= Ry, so

that by assumption Rx∩Ry 6= 0. Hence we can find elements r, s ∈ R

such that rx = sy 6= 0. Note that r, s /∈ m, since else rx = sy = 0

by definition of (0 : m)R. This says that r and s are units and hence

x = r−1sy.

Taking the above modulo m, we find that x and y are linearly de-

pendent in the residue field. Since x and y are arbitrary, this says that

any two elements are linearly dependent, so that dimk(0 : m)R 6 1.

We conclude that dimk(0 : m)R = dimk HomR(k,R) = 1 identically, so

that R is Cohen-Macaulay of type 1, therefore R is Gorenstein.

19. Problem 3.3.22

This problem is merely definition checking.

(a). This is obviously a group as it behaves the same as a direct sum.

For the ring properties,

((r,m)(s, n))(t, p) = (rs, sm+ rn)(t, p)

= (rst, tsm+ trn+ rsp)

= (r,m)(st, sp+ tn)

= (r,m)((s, n)(t, p))

proves associativity and our identity is obviously (1, 0).

(b). Given r ∈ R, send r 7→ (r, 0). This is clearly bijective, so it

remains to show it is a homomorphism. Note that φ(rs) = (rs, 0) =

(r, 0)(s, 0) = φ(r)φ(s), so R = R ∗ 0.



COHEN-MACAULAY RINGS SELECTED EXERCISES 17

(c). Given (0,m) ∈ 0 ∗M , we see that (r, n)(0,m) = (0, rm) ∈ 0 ∗M ,

so this is an ideal. Given arbitrary (0,m) and (0, n) ∈ 0 ∗M , we see

that (0, n)(0,m) = (0, 0) so that (0 ∗M)2 = 0.

(d). Suppose we have an ideal (I,N) ∈ R ∗ M , where I ⊂ R and

N ⊂ M . We want to deduce properties of I and N in order for the

pair to be an ideal. We see:

(R,M)(I,N) = (RI,RN + IM)

In order for the above to remain a subset of (I,N), we require that

RI ⊂ I, so that I is an ideal, and that N = M . Hence, all ideals of

R ∗M are of the form I ∗M for some ideal I ⊂ R. If R is local, we

deduce immediately that R ∗M is local with maximal ideal m ∗M .

(e). By the characterization given in part (d), assume there exists a

chain of ideals I0 ∗M ⊂ I1 ∗M ⊂ . . . . This corresponds directly to

a chain of ideals I0 ⊂ I1 ⊂ . . . in R. If R is Noetherian, this chain

stabilizes, and hence R ∗M is Noetherian.

Choosing a maximal descending chain of prime ideals, this also cor-

responds to a maximal chain of prime ideals in R ∗M . Immediately

we deduce dimR = dimR ∗M .

20. Problem 3.3.23

Suppose that C/xC is a canonical module for R/x), where x denotes

a regular sequence of length n. Since C is assumed maximal Cohen-

Macaulay, we only need prove that idR C <∞ and r(C) = 1.
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R is Cohen-Macaulay, so that dimR = depthR = idR C. We also

have,

idR/(x)C/xC = depthR/(x)C/xC

= depthR C − n

= idR C − n

Since idR/(x)C/xC <∞, we conclude that idR C <∞ as well.

Finally, to show r(C) = 1, we have the isomorphism (where d :=

depthR)

ExtdR(k, C) ∼= Extd−nR (k, C/xC)

We know that r(C/xC) = 1, that is, rankk Extd−nR (k, C/xC) = 1,

where we’ve used depthR/xR/x = depthR − n. Then the above iso-

morphism gives that r(C) = 1 as well, completing the proof.

21. Problem 3.3.26

We proceed by induction on the projective dimension of the R-

module M . For the base case, set pdM = 0. As R is local, M is

free, and also TorRi (k,M) = 0 for all i > 0.

Also, R is Gorenstein so that in particular it is Cohen-Macaulay, giv-

ing d := dimR = depthR. Hence, by definition of depth, Extd−iR (k,M) =

0 whenever i > 0, giving the stated equality when i > 0.

Now, when i = 0, TorRi (k,M) = k ⊗M . To prove this case, we will

show TorR0 (k,M) = k⊕µ(M) = Ext0R(k,M). The first equality is trivial,

as

k ⊗M = k ⊗Roplusµ(M) = k⊕µ(M)
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For the second equality, we have

ExtdR(k,M) = ExtdR(k,R⊕µ(M))

= (ExtdR(k,R))⊕µ(M)

= k⊕µ(M)

Where the final equality follows from R being Gorenstein. Since r(R) =

1, we must have that ExtdR(k,R) = k, as they are both vector spaces

of dimension 1 over k.

Inductive Step: Suppose now that pdM = n. We chose a free reso-

lution

0 // Fn // · · · // F0
// M // 0

and extract a short exact sequence

0 −→ N −→ F0 −→M −→ 0

Applying both k⊗− and HomR(k,−) to the above, we have the induced

sequences

TorRi (k, F0) −→ TorRi (k,M) −→ TorRi+1(k,M) −→ TorRi+1(k, F0)

ExtiR(k, F0) −→ ExtiR(k,M) −→ Exti+1
R (k,M) −→ Exti+1

R (k, F0)

Since F0 is free, in particular it is flat, so that ExtiR(k,M) = TorRi (k,M) =

0 when i > 0. Therefore the above sequences give the isomorphisms

TorRi (k,M) = TorRi+1(k,N)

ExtiR(k,M) = Exti+1
R (k,N)

Since pdN = n− 1, we apply the inductive hypothesis to see

TorRi (k,M) = TorRi+1(k,N) = Extd−i−1R (k,N) = Extd−iR (k,M)

So that TorRi (k,M) = Extd−iR (k,M) when i > 0. For the case i = 0,

first note that the exact same reasoning as in the base case gives that
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ExtdR(k, F0) = k ⊗ F0, so we have the commutative diagram

k ⊗N //

��

k ⊗ F0

��

// k ⊗M

��

Extdi (k,N) // Extdi (k, F0) // Extdi (k,M)

The first vertical arrow is an isomorphism by the inductive hypothesis,

and the second is an isomorphism by the above. Hence, the third ver-

tical must also be an isomorphism, that is, TorRi (k,M) = Extd−iR (k,M)

when i = 0 as well, completing the proof.

22. Problem 3.3.27

By the given assumptions, we see that there exists an epimorphism

⊕ωR → R, inducing an exact sequence

0 −→ K −→ ⊕ωR −→ R −→ 0

As R is free, the above sequence splits, that is, ⊕ωR = R⊕K. Since, by

definition, ωR has finite injective dimension, we conclude that idRR <

∞ as well, so that R is Gorenstein.

23. Problem 3.3.28

(a). We proceed by induction on the dimension of M (= dimR, since

M is maximal Cohen-Macaulay). When dimM = 0, M is injective

and dimR = dimωR = idωR = 0. Thus, ωR is injective as well, and by

3.3.18 of the book, it is also of rank 1. Therefore ωR = E(R/m), E(−)

denoting the injective hull (over R).

However, as M is also injective, we have

M = ⊕E(R/m) = ⊕ωR

which completes the base case.
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Inductive Step: Set dimM = n > 0. Then, obviously depthR > 0,

so we can choose some M -regular element x, inducing a short exact

sequence

0 −→M −→M −→M/xM −→ 0

As depthM/xM = n − 1, we have that M/xM = ⊕ωR/(x) by the

inductive hypothesis. Using 3.3.5 in the book,

ωR/(x) = ωR/xωR

And, as any regular element of M is also regular in ωR, we have

M/xM = ⊕ωR/xωR = (⊕ωR)/x(⊕ωR)

and hence we deduce that M = ⊕ωR, which completes the proof.

(b). Firstly, note that if there exists a finite ωR resolution of M , then,

as each ωR has finite injective dimension, we deduce that idM <∞ as

well.

To show the converse, we use the hint. Suppose idM < ∞. Note

that any maximal Cohen-Macaulay module is isomorphic to a direct

sum of canonical modules ωR. That is, we can find a Cohen-Macaulay

approximation:

0 −→ Y1 −→ ωr0R −→M −→ 0

Then, as Y1 has finite injective dimension, we can use part (a) to find

another Cohen-Macaulay approximation

0 −→ Y2 −→ ωr1R −→ Y1
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We continue in this fashion:

0

!!

0

Y1

==

  
ωr2R

  

// ωr1R

>>

// ωr0R
// M // 0

Y2

!!

>>

0

==

0

We continue this process, adding to the above diagram by taking suc-

cessive Cohen-Macaulay approximations of each Yi. Since M has finite

injective dimension, this process must terminate past some integer k,

giving the desired resolution.

(c).


