COHEN-MACAULAY RINGS SELECTED EXERCISES

KELLER VANDEBOGERT

1. PROBLEM 1.1.9

Proceed by induction, and suppose z € R is a U and N-regular
element for the base case. Suppose now that xm = 0 for some m € M.
We want to show that m = 0. Then, let ¢p: U - M and ¢ : M — N
be the sequence maps. Note that by properties of exact sequences that
1) is surjective and ¢ is injective.

Since xm = 0, Y(zm) = xp(m) = 0 = Y(m) = 0, since z is
regular in N. Thus, m € Kerv = ¢(U) so that m = ¢(u) for some
uel.

Then, certainly xm = ¢(zu) = 0, and by injectivity, we know that
xzu = 0. Since z is regular, we conclude that u = 0 so that m = ¢(0) =
0, and x is regular in M.

Suppose now that x = x1,...,x, is weak U and N regular for all
1 < n. Then, merely apply the argument of the base case to the exact

sequence induced:

0—)U/(ZL‘h...,l'n_l)U—>M/(l'1,...,l’n_1)M—>N/(ZE1,...,ZL‘n_1>N—)O

To show that x must be a weak M regular sequence as well.
Now, suppose that x is weak U-regular and N-regular. Using Propo-
sition 1.1.4, we have an induced exact sequence
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0—U/xU — M/xM — N/xN — 0

Suppose for contradiction that M /xM = 0. Then, by properties of
exactness, the induced map v is surjective and we conclude N/xN = 0,

contradicting the fact that x is N-regular. Thus, x is also M-regular.

2. PROBLEM 1.1.10

(a). Suppose that x and z’ are both M-regular elements. Suppose
(xz’)m = 0 for some m € M. Then, since z is regular, 2'm = 0, and
since 2’ is regular, we conclude m = 0. Thus, xza’ is M-regular, and
the general case for weak M-regular sequences follows by induction.
Now, assume that M/zM # 0 and M/2'M # 0, and suppose for
contradiction that M/xa’M = 0. Then, since M = za’M and 2’ M C
M, we multiply by z to see that M C xM so that M /xM = 0 (and by
commutativity we also see M/2'M = 0), a clear contradiction. Thus,

M /xx' M # 0 so that the general case follows by induction.

(b). This result follows from part (a) almost immediately, where we

note that we can apply this to any M-regular sequence and itself,

merely identifying the ith element each time. More precisely, sup-

pose X = x1,...,x, is regular. Then, by induction and the result of

(a), z5', z9, ..., z, is regular as well, with e; some integer > 1. Now

successively apply this for every other index 1 < ¢ < n to see that
€n—1

xit xS, x, T, asr is also M-regular.

3. PrROBLEM 1.1.11

We want to prove the following: Suppose x is a weak-M ®r N se-

quence, and N is faithfully flat over R. Then x is a weak M-sequence.
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Let = be a regular M ® N element (as usual, the general case follows
from induction). We have the homothety v : M @ N — M ® N,
m ®n +— x(m @ n), which is injective since x is regular. By definition,
x(m®n) = (xm) @ n so that Y(m @ n) = (xrm) @ n.

By faithful flatness of IV, the map x ®idy is injective iff x is injective
(x : M — M, m — xm). But this is equivalent to saying that the

element x is M-regular, so we are done.

4. EXERCISE 1.4.18

Since M has a rank, say r, we have that M ® Q = @Q", Q denotes
our field of fractions of R. We can choose a basis {ej, ...,e,} for the
above vector space. Since M is finitely generated, we can also choose

a generating set {x1, ...,z,}. Consider the inclusion M — Q". We

can find a;;, bj; € R such that z; = Zj %ej. Take b := Hijbij' We
ij P

can then consider the inclusion

R R Re,
M%ﬁ@ﬁ@...@ €

b b p oo

The above is obviously a free module, and the inclusion is injective
since M is torsion free. Therefore, M is isomorphic to its image, which
is a submodule of the free module R". Note also that R" clearly has

the same rank, as R" ® Q = )", so the problem is solved.

5. PROBLEM 1.4.19

Since R is Noetherian and M, N are finitely generated, M is finitely

presented. Choose a presentation

R —R'"— M —0
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Apply Hompg(—, N) to the above, and recall that Homg(R, N) = N.
We will have an induced short exact sequence (with N’ being the image

of the map from N™ — N™):
0 — Hom(M,N) — N* — N' — 0
Employing the result of Proposition 1.2.9 of the book, we see
grade(I, Hom(M, N)) > min{grade(I, N), grade(I, N') + 1}

Now we have 3 cases: in the trivial case grade(I, N) = 0, obviously
grade(I/,Hom(M, N)) > 0 always. Suppose grade(/, N) = 1. Then
grade(I, N') = 1 as well, and the result again follows immediately.

Finally, when grade(/, N) > 2, we have that grade(/, N') > 1, so that
grade(l, Hom(M, N)) > min{grade(I, N), 2}

Completing the proof.

6. PROBLEM 1.4.20

(a). First, we have the following: Claim: If M is finitely generated and
R is Noetherian, then M* is torsion free and finitely generated.
To prove this claim, note that since M is finitely generated, we have

an exact sequence

R"— M —0
Applying Hompg(—, R) to the above yields
0— M*— R"

Hence, M is isomorphic to its image in a torsion free submodule. Since
R is Noetherian, every submodule of R" is finitely generated, giving

that M* is torsion free and finitely generated.
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Now we can proceed to the problem. Assume M is torsionless and
suppose that rm = 0 for 0 # r € R and m € M. We want to
prove that m = 0. Consider the map m — (¢(m))gen+. By definition
of torsionless, the image of m is 0 iff m = 0 identically. Consider
rm — (¢(rm))ger= = 1(¢p(Mm))penm+. Since rm = 0, this point maps
to 0. However, the above shows that r(¢(m))sen+ = 0. Since M*
is torsion free, we conclude that m = 0, so that M is torsion free as

asserted.

(b). First note that if M is a submodule of a finite free module R", then
it is obviously torsionless since (R")™ = R", so that any free module
is torsionless (and hence any submodule of a free module. Note that
this improves the claim of part (a), as we now see that M* is also
torsionless.

Now, suppose that M is torsionless. By the claim proven in part (a),
M is finitely generated and we can choose a generating set {¢1, ..., ¢, }.
Then, we can consider the following map © : M — R", which takes
O(m) = (¢;(m)),. It suffices to show that this map is injective, so
that M is isomorphic to its image as a submodule of a free module.

Suppose then that ©(m) = 0. Then, ¢;(m) = 0 for each generator.
But then we see that ¢(m) = 0 for all ¢ € M*. Since M is torsionless,

m = 0, so that © is injective, as desired.

(c). Note that since M* is finitely generated, the claim of part (a)
along with the remark in (b) gives that M** is finitely generated and
torsionless. Since M is reflexive, M = M™*, so M is torsionless and

hence isomorphic to a submodule of a free module (by (b)). Taking Fy
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as the cokernel of the map M — R" := F}, we have the exact sequence
00— M —F,— Fy,—0

So that M is a second syzygy.

7. PROBLEM 1.4.21
We have an exact sequence
F—G—M-—70
Dualizing yields
0— M —G — F"— DM)—0

We have that M* is finitely presented, so choose a presentation F; —

Fy — M* — 0, leading to a partial free resolution of D(M):
FF—F—G — F" — DM)—0

Dualizing our presentation of M™*, we get the exact sequence

0 — M™ — Fj — F}
Leading to the sequence

G—=M—> M — F;

Which can be extended to the sequence

F—G— F] — F}

Now, let us consider computing the cohomology in the above sequence.
The cohomology at G is going to be the kernel of the map taking g —
g+Im ¢ — h(g+Im¢) — F] modulothe image of ¢, which is M. That
is, g + Im ¢ € Ker h, so that Ker(G — FJ) = {g: g+ Im¢ € Kerh}.

Hence, taking the quotient Ker(G — Fj)/Im ¢ gives precisely Ker h.
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Now consider the cohomology at Fjf. Im(G — F{) is isomorphic to
Im h viewed as a submodule of Fj (under the inclusion M** — Ff).
Also, by the exact sequence 0 — M** — Fj — F}, we have that
Ker(Fy — Fy) = M*.

Now, to solve the problem, dualize our partial resolution for D(M).
We then see that the above cohomology groups are precisely isomorphic

to Exth(D(M), R) and Ext%(D(M), R), respectively.

8. EXERCISE 1.4.22
9. EXERCISE 1.4.23
10. EXERCISE 1.4.24
11. PROBLEM 3.1.21

Since R is given as a PID, it suffices to show the quotient K/R of
the field of fractions by R is divisible. Note:

K/R={r/s€ K/R|s# 1}
Hence, given r/s € K/R, we can write this as r(1/s), r € R, hence

every element is divisible so that K/R is injective (and hence 0 —»

K — K/R — 0 is an injective resolution).

12. PROBLEM 3.1.22

We proceed by proving that Hompg(R, k) is the injective hull of the
residue field, which is indecomposable by Theorem 3.2.6.
Take S := Soc(Hompg(R,k)). First note that injectivity is clear,

since
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Hompg(—, Homg(R, k)) = Hompg(— ®y R, k)
= Homp(—, k)
Since k is a field, it is obvious that Hompg(—, k) is exact, so that
Hompg(R, k) is an injective module over R. Continuing, since R has
finite k-dimension, Homy (R, k) is an Artinian module, so that S is the
intersection of all essential extensions of Hompg(R, k), however is also

characterized as

S = Hompg(R/m, Homg(R, k) = Hompg(k ®; R, k)
>~ Homyg(k, k) = k
From the set of all simple submodules of Homy (R, k), we can choose
a minimal element M. By definition of essential extension, M NS # 0
and hence we see that Homy (R, k) is an injective essential extension of
S, so that Homy(R, k) = Eg(S) = Eg(k), which is nondecomposable,

so we are done.

13. PROBLEM 3.1.23

Suppose there exists a nonzero finitely generated injective module
E. We have that dimgp(F) < idg(F) = 0, so that E is an Artinian
module (since E is also finitely generated) with Supp(E) = {m}. By
3.2.8, E = ©FE(R/m), implying that E(R/m) must also be finitely
generated.

If T(E) denotes our Matlis dual (so that 7'(—) = Hom(—, E(k))),
we see that T(E(k)) must be Artinian as an R-module. However,

T(R) = E(k), and hence:
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T(E(k)) =T(T(R)) = R So that R is Artinian as an R-module, and

hence as a ring.

14. PROBLEM 3.1.24

We proceed by induction on depthy M. Assume M # 0 (else the
statement holds trivially) and suppose first that depthp M = 0. Then,

m € Ass(M) so that we have an exact sequence

0 R/m 2= M L 0
Set r := idg N, and apply Hompg(—, N) to the above. We have an

induced exact sequence:

oo — Exth(M, N) — Extx(R/m, N) — Ext};" (L, N) — - - -

Obviously Ext(R/m, N) # 0 and Ext};"* (L, N) = 0 by definition of
injective dimension. Hence, Ext (M, N) # 0, and Ext’% (M, N) = 0 for
all i > r. More precisely, idg N = r = sup{i | Ext); (M, N) # 0}. Since
depthy M = 0, this completes the base case.

Inductive Step: Suppose depthp M > 0, so we can choose some M-

regular element x € R, giving an exact sequence

0 M—>M M/zM —0

Apply Hompg(—, N) to the above:

o —— Exth (M /2 M, N) — Ext’ (M, N) — Exth(M, N) —

Exte ' (M/xM, N)




10 KELLER VANDEBOGERT

By the inductive hypothesis, we have that idg N = depthy (M /xM) +
sup{i | Extiy(M/xM, N) # 0}. Set t := sup{i | Extly(M/xM, N) # 0},

so that for ¢ > ¢ the above exact sequence implies
oo —— Exty (M /M, N) — Exth(M, N) —= Exth(M, N) —= 0

is exact, so that Ext’ (M, N) = x Ext’% (M, N). By Nakayama’s Lemma,
we have that Exth (M, N) = 0, and likewise Ext’, (M, N) = 0 for all
i >t. We also have that Ext’; (M, N) # 0, since the above shows we

have an exact sequence
o —— Extt (M, N) — Exthy(M/x M, N) —=0

so that the vanishing of Ext%, ' (M, N) implies the vanishing of Ext’ (M /xM, N),
in contradiction with the definition of .

Thus, we deduce sup{i | Extr(M,N) # 0} =t — 1. Using this and
the standard equality depth, M/xM = depthy M — 1, we see:

idg N = depthp(M/xM) +t
= depthy M — 1+ sup{i | Extg(M,N) # 0} + 1

= depthy M + sup{i | Extgr(M,N) # 0}
Using that idg N = depth R, the above implies

depth R — depthy M = sup{i | Extgr(M, N) # 0}

which completes the proof.

15. PROBLEM 3.1.25

We have that R is Gorenstein, M is finitely generated.
Assume first that pd M = n < oco. We can choose a minimal free

resolution
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0 E, Fy M 0

Since R is Gorenstein and each Fj is free, id F; = id R < co. By the
above resolution it is also clear that id M < id F; + ¢ < 0o, and hence
id M < oo, as desired.

Conversely, suppose that id M < oo. We proceed by induction on
the depth of R. When depth R = 0, we have that R is injective (id R =
depth R). Since M is finitely generated with dimension 0, it is finitely

presented so that there exists an exact sequence
00— R"—R"— M —0

for positive integer m, n. Since R is injective, so is R", and hence the

above sequence splits so that R™ = R" & M. Then M is the direct

summand of a free module, hence projective with pd M = 0 < oc.
Inductive Step: Suppose depth R = n, and choose some R-regular

element x. As M is finitely generated, we have an exact sequence
0 — K —F—M-—70

where K denotes the kernel of the surjective map F' — M, and F' is
free.

It suffices to show that pd K < oo, since any projective resolution
for K can be extended to a resolution for M. Since F'is free, x is also

F regular and hence K-regular. We have the equality:

Since R/x R is also Gorenstein, we can employ the inductive hypothesis

to deduce pdp,,p K/rK < oo. However, pdg,p K/tK = pdp K,
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hence K has finite projective dimension, so that pd M < oo as well,

completing the proof.

16. PROBLEM 3.1.26

Suppose that id k < oo. Then, note:

id k = sup{i | Ext’(k, k) # 0} = pd k
Hence pdk < oo as well. By the Auslander-Buchsbaum-Serre Theo-

rem, we conclude that R is regular.

17. PROBLEM 3.2.14

(a). Let Er(k) := E (Egr(k) denotes the injective hull of the residue
field k). Note that the natural homomorphism ¢ : E — E ®p R
explicitly takes x — = ® 1, where 1 = {14+ m'},.

We first show surjectivity. Let z ® {a; + m'}, € E @ R. For some
positive integer n, we have that m"z = 0. We then deduce that m" R

annihilates x ® 1, since

o~ .

m"R(z®1) = (m"z)® (R) =09 R =0

Consider then {a, + m'};, where a, is of the residue class of m" in

{CLt + mt}t.
Claim: r ® {a, + m'}; = 2 ® {a; + m'},

The above is equivalent to showing {a, — a; + m'},(z ® 1) = 0. We
have two cases: t > n and t < n. If t < n, then by definition of the
inverse limit we have that a,, — a; + m! = 0.

Now, if t > n, then a,, — a; € m”. Since m” annihilates x, the above

claim follows.
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Finally, using the above, we have:

planz) = (an7) @ {1 +m'}
=z ®{a, +m'},
=2 ®{a; +m'}; (by claim)
So that ¢ is surjective. It remains to show injectivity. This is much
easier, however, as R is faithfully flat over R. Since the identity is
clearly injective, we have that 1 ® Tis injective by flatness. Then ¢ is

an isomorphism, so that £ = F ®p R.

(b). Let F' denote the injective hull of E over R. Then, we want to
show that in fact F' = F, giving that F' = Ex(k) = E.

Note first that F is also the injective hull (over R) of the residue
field k. We then have that given x € F' there exists a positive integer n
such that m"Rz = 0. Since k = R/m = R/mR, we have the following

commutative diagram (rows exact):

0—=k=k—=E=E®gR
e
Ep(k)
Since F' = E3(k) is an essential extension, ¢ is a monomorphism, giving

us an exact sequence:
0—FE —F— F/Ker¢ —0

By injectivity of E, we have that ' = E & E/Ker¢. However, F
and E/ Ker ¢ both have an R-module structure by part (a), hence we
conclude that E/Ker¢ = 0 by indecomposability of F. Thus E =
Eg(k), as desired.
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(c). Note first that since N is finitely generated, N = N @z R. We

have the following:

Homz(N, E) = Homs(N @5 R, E)
= Hompg(N, Homﬁ(ﬁ, E))
= Homg(N, F)
Where we’ve employed Hom-Tensor adjointness and that fact that
since E = Ez(k) by part (b), Matlis Duality yields Homﬁ(ﬁ, E) =
T(R) = E.

18. PROBLEM 3.2.15

Assume that (R, m, k) is an Artinian local ring. We proceed with
the proof:

(a) = (b): Suppose R is Gorenstein. R is Artinian, hence id R =
dim R = 0, so that R is injective. Let M be a finitely generated R-
module. M must also be injective, and as R is Artinian, we have an

exact sequence

0 —R" —R'"—M—0

Applying Hompg(—, R) twice, we note that our sequence remains exact
by injectivity and also that R™ and R™ are reflexive since they are free.

Thus the resulting exact sequence becomes
0 — R™ — R" — Homg(Homg(M,R),R) — 0

and we immediately see that M must be reflexive.
(b) = (c): Suppose that every finitely generated R module is re-
flexive. Note that Ann I = Hompg(R/I, R), so that Homgr(Ann I, R) =
R/I by reflexivity. Since Ann R/I = I, we then see that I = Ann(Hompg(Ann 7, R)).
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Hence, let © € I. Then x Homgr(Ann I, R) = 0. Thus, if we merely

choose the inclusion map 7 : AnnI — R, the above shows that xi =0
so that x € Ann Ann I. Therefore we see I C Ann Ann /.

To show the reverse inclusion, let x € AnnAnn/. By definition,

x Ann I = 0 giving:

xAnmn/ =0 = zHom(AnnI,R) =0
— 2 € Ann(Hompg(Ann I, R)
= zxcl

Thus we conclude Ann Ann/ = 1.

(¢) = (d): Assume we are given nonzero ideal I, J C R. We see:

INJ=AmAnn7NAnnAnn J

= Ann(Ann 7 + Ann J)

Hence I N J = 0 if and only if Ann/ + AnnJ = R. Since I, J # 0,
however, Ann [ and Ann J are contained in the maximal ideal m. This
immediately gives that Ann/ + AnnJ C m, and hence by the above
InJ#0.

(d) = (a): We only need show that R is Cohen-Macaulay and
of type r(R) = 1. Since R is Artinian, we trivially have that dim R =
depth R = 0, so it remains to prove that r(R) = 1.

Recall that type is defined as the vector space dimension of Ext(;fpthR(k;, R).
As depth R = 0, we want to find dimy Hompg(k, R). We recognize
Hompg(k, R) as the socle (0 : m)g. Using the fact that R is Artinian
gives that m™ = 0 for some integer n, and hence (0 : m)g is nontrivial

—> dimy Hompg(k, R) > 1. It remains to prove the reverse inequality.
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Choose nonzero x, y € (0 : m)g. We have that Rz # 0 # Ry, so
that by assumption Rx N Ry # 0. Hence we can find elements r, s € R
such that rz = sy # 0. Note that r, s ¢ m, since else rz = sy = 0
by definition of (0 : m)g. This says that r and s are units and hence
x =1r"ltsy.

Taking the above modulo m, we find that x and y are linearly de-
pendent in the residue field. Since x and y are arbitrary, this says that
any two elements are linearly dependent, so that dimg(0 : m)p < 1.
We conclude that dimg(0 : m)z = dimg Hompg(k, R) = 1 identically, so

that R is Cohen-Macaulay of type 1, therefore R is Gorenstein.

19. PROBLEM 3.3.22

This problem is merely definition checking.

(a). This is obviously a group as it behaves the same as a direct sum.

For the ring properties,

((r;m)(s,n))(t,p)

rs,sm+rn)(t,p)

= (
= (rst,tsm + trn + rsp)
= (r,m)(st, sp + tn)

= (

r,m)((s,n)(t,p))

proves associativity and our identity is obviously (1,0).

(b). Given r € R, send r — (r,0). This is clearly bijective, so it
remains to show it is a homomorphism. Note that ¢(rs) = (rs,0) =

(r,0)(s,0) = ¢(r)p(s), so R = R 0.
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(c). Given (0,m) € 0% M, we see that (r,n)(0,m) = (0,rm) € 0% M,
so this is an ideal. Given arbitrary (0,m) and (0,n) € 0% M, we see

that (0,n)(0,m) = (0,0) so that (0 M)* = 0.

(d). Suppose we have an ideal (I, N) € R M, where I C R and
N C M. We want to deduce properties of I and N in order for the

pair to be an ideal. We see:

(R,M)(I,N) = (RI,RN + IM)

In order for the above to remain a subset of (I, N), we require that
RI C I, so that [ is an ideal, and that N = M. Hence, all ideals of
R x M are of the form [ x M for some ideal I C R. If R is local, we

deduce immediately that R * M is local with maximal ideal m % M.

(e). By the characterization given in part (d), assume there exists a
chain of ideals Ip« M C I; * M C .... This corresponds directly to
a chain of ideals Iy C Iy C ... in R. If R is Noetherian, this chain
stabilizes, and hence R % M is Noetherian.

Choosing a maximal descending chain of prime ideals, this also cor-
responds to a maximal chain of prime ideals in R % M. Immediately

we deduce dim R = dim R = M.

20. PROBLEM 3.3.23

Suppose that C'/xC'is a canonical module for R/x), where x denotes
a regular sequence of length n. Since C is assumed maximal Cohen-

Macaulay, we only need prove that idg C' < oo and r(C') = 1.
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R is Cohen-Macaulay, so that dim R = depth R = idg C. We also
have,
idg/(x) C/xC = depthp ) C/xC
=depth, C —n
=idrC —n
Since idpg)(x) C'/xC < oo, we conclude that idg C' < oo as well.

Finally, to show r(C') = 1, we have the isomorphism (where d :=

depth R)
Ext$(k, O) = Ext% " (k, C/xC)

We know that r7(C/xC) = 1, that is, rank; Extg "(k,C/xC) = 1,
where we've used depthp, 17/x = depth R — n. Then the above iso-

morphism gives that r(C) = 1 as well, completing the proof.

21. PROBLEM 3.3.26

We proceed by induction on the projective dimension of the R-
module M. For the base case, set pd M = 0. As R is local, M is
free, and also Torf(k, M) = 0 for all i > 0.

Also, R is Gorenstein so that in particular it is Cohen-Macaulay, giv-
ing d := dim R = depth R. Hence, by definition of depth, Ext% *(k, M) =
0 whenever i > 0, giving the stated equality when ¢ > 0.

Now, when i = 0, Tor®(k, M) = k ® M. To prove this case, we will
show Torf(k, M) = kM) = Ext%(k, M). The first equality is trivial,

as

ko M =k ® RoPusu(M) — pou(M)
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For the second equality, we have
Extd(k, M) = Ext®(k, RP#M))
= (Ext}(k, R))®+()
— LOu(M)
Where the final equality follows from R being Gorenstein. Since r(R) =
1, we must have that Ext%(k, R) = k, as they are both vector spaces
of dimension 1 over k.
Inductive Step: Suppose now that pd M = n. We chose a free reso-

lution

0 E, e £y M 0
and extract a short exact sequence
0—N—F—M-—0

Applying both k®— and Hompg(k, —) to the above, we have the induced

sequences
Torf(k;, F) — Torf(k, M) — Torfil(k, M) — Torﬁl(k;, Fy)
Exty(k, Fy) — Extl(k, M) — Extii!(k, M) — Ext%(k, Fy)

Since Fy is free, in particular it is flat, so that Ext%(k, M) = Tor}"(k, M) =

0 when ¢ > 0. Therefore the above sequences give the isomorphisms
Torf(k, M) = Tor; (k, N)
Exth(k, M) = Extiy ' (k, N)
Since pd N = n — 1, we apply the inductive hypothesis to see
Torf(k, M) = Torl ,(k, N) = Ext} "' (k, N) = Ext} ‘(k, M)

So that Torf(k, M) = Ext% *(k, M) when i > 0. For the case i = 0,

first note that the exact same reasoning as in the base case gives that
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Exth(k, Fy) = k ® Fy, so we have the commutative diagram

k® N k& Fy k& M

| | |

Exté(k, N) — Exté(k, Fy) — Ext{(k, M)

The first vertical arrow is an isomorphism by the inductive hypothesis,
and the second is an isomorphism by the above. Hence, the third ver-
tical must also be an isomorphism, that is, Tor/(k, M) = Ext% *(k, M)

when ¢ = 0 as well, completing the proof.

22. PROBLEM 3.3.27

By the given assumptions, we see that there exists an epimorphism

Pwr — R, inducing an exact sequence
00— K —Pwr —>R—0

As R is free, the above sequence splits, that is, Gwr = R® K. Since, by
definition, wg has finite injective dimension, we conclude that idg R <

oo as well, so that R is Gorenstein.

23. PROBLEM 3.3.28

(a). We proceed by induction on the dimension of M (= dim R, since
M is maximal Cohen-Macaulay). When dim M = 0, M is injective
and dim R = dimwg = idwg = 0. Thus, wg is injective as well, and by
3.3.18 of the book, it is also of rank 1. Therefore wp = E(R/m), E(—)
denoting the injective hull (over R).

However, as M is also injective, we have

which completes the base case.
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Inductive Step: Set dim M = n > 0. Then, obviously depth R > 0,
so we can choose some M-regular element z, inducing a short exact

sequence

0—M-—M— M/zM — 0

As depth M /xM = n — 1, we have that M/xM = @wp/,) by the
inductive hypothesis. Using 3.3.5 in the book,

WR/(z) = WR/TWR
And, as any regular element of M is also regular in wg, we have
M/xzM = ®wgr/rwr = (Pwr)/x(Dwr)

and hence we deduce that M = Gwg, which completes the proof.

(b). Firstly, note that if there exists a finite wg resolution of M, then,
as each wg has finite injective dimension, we deduce that id M < oo as
well.

To show the converse, we use the hint. Suppose id M < oco. Note
that any maximal Cohen-Macaulay module is isomorphic to a direct
sum of canonical modules wg. That is, we can find a Cohen-Macaulay

approximation:

0—Y, —wy —M-—70

Then, as Y; has finite injective dimension, we can use part (a) to find

another Cohen-Macaulay approximation

0 —Y, —wpg — Y
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We continue in this fashion:

0\ /O
Y
Wy Wp We

We continue this process, adding to the above diagram by taking suc-

cessive Cohen-Macaulay approximations of each Y;. Since M has finite

injective dimension, this process must terminate past some integer k,

giving the desired resolution.

(c).



